## York River P90 Scores

2016

| Station | Class | Count | MFCount | GM | SDV | MAX | P90 | Appd_Std | Restr_Std | Min_Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WB020.00 | P | 30 | 30 | 3.8 | 0.41 | 52 | 13.1 | 31 | 163 | $2 / 27 / 2012$ |
| WB021.00 | P | 30 | 30 | 3.8 | 0.5 | 140 | 17 | 31 | 163 | $2 / 27 / 2012$ |
| WB023.00 | CA | 30 | 30 | 2.3 | 0.26 | 40 | 5 | 31 | 163 | $1 / 9 / 2012$ |
| WB026.00 | CA | 30 | 30 | 4.8 | 0.53 | 78 | 23.1 | 31 | 163 | $1 / 9 / 2012$ |
| WB026.50 | CA | 30 | 30 | 3.1 | 0.63 | 1320 | 20.2 | 31 | 163 | $12 / 14 / 2009$ |
| WB027.00 | CA | 30 | 30 | 2.2 | 0.23 | 26 | 4.5 | 31 | 163 | $1 / 9 / 2012$ |
| WB029.00 | P | 30 | 30 | 2.7 | 0.34 | 38 | 7.7 | 31 | 163 | $2 / 27 / 2012$ |

2015

| Station | Class | Count | MFCount | GM | SDV | MAX | P90 | Appd_Std | Restr_Std | Min_Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WB020.00 | P | 30 | 30 | 3.5 | 0.4 | 52 | 11.7 | 31 | 163 | $1 / 31 / 2011$ |
| WB021.00 | P | 30 | 30 | 3.5 | 0.49 | 140 | 15.4 | 31 | 163 | $1 / 31 / 2011$ |
| WB023.00 | CA | 30 | 30 | 2.6 | 0.37 | 82 | 7.8 | 31 | 163 | $1 / 3 / 2011$ |
| WB026.00 | CA | 30 | 30 | 4.1 | 0.49 | 78 | 17.7 | 31 | 163 | $1 / 3 / 2011$ |
| WB026.50 | CA | 30 | 30 | 3.5 | 0.63 | 1320 | 23 | 31 | 163 | $4 / 14 / 2008$ |
| WB027.00 | CA | 30 | 30 | 2.2 | 0.23 | 26 | 4.4 | 31 | 163 | $1 / 3 / 2011$ |
| WB029.00 | P | 30 | 30 | 2.4 | 0.26 | 26 | 5.2 | 31 | 163 | $1 / 31 / 2011$ |

2014

| Station | Class | Count | MFCount | GM | SDV | MAX | P90 | Appd_Std | Restr_Std | Min_Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WB016.00 | P | 30 | 30 | 4.3 | 0.41 | 42 | 14.7 | 31 | 163 | $2 / 24 / 2010$ |
| WB020.00 | P | 30 | 30 | 4.5 | 0.54 | 220 | 22.3 | 31 | 163 | $2 / 24 / 2010$ |
| WB021.00 | P | 30 | 30 | 3.3 | 0.46 | 140 | 13.2 | 31 | 163 | $2 / 24 / 2010$ |
| WB023.00 | CA | 30 | 30 | 2.9 | 0.48 | 130 | 12.2 | 31 | 163 | $1 / 5 / 2010$ |
| WB026.00 | CA | 30 | 30 | 4.4 | 0.54 | 122 | 22.1 | 31 | 163 | $1 / 5 / 2010$ |
| WB026.50 | CA | 30 | 30 | 3.4 | 0.64 | 1320 | 23 | 31 | 163 | $11 / 19 / 2007$ |
| WB027.00 | CA | 30 | 30 | 2.1 | 0.21 | 26 | 3.9 | 31 | 163 | $1 / 5 / 2010$ |
| WB029.00 | P | 30 | 30 | 2.7 | 0.46 | 300 | 10.9 | 31 | 163 | $2 / 24 / 2010$ |

2013

| Station | Class | Count | MFCount | GM | SDV | MAX | P90 | Appd_Std | Restr_Std | Min_Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WB016.00 | P | 30 | 30 | 5.2 | 0.51 | 158 | 23.7 | 31 | 163 | $3 / 16 / 2009$ |
| WB020.00 | P | 30 | 30 | 5 | 0.56 | 220 | 27 | 31 | 163 | $3 / 16 / 2009$ |
| WB021.00 | P | 30 | 30 | 3.5 | 0.41 | 82 | 12 | 31 | 163 | $3 / 16 / 2009$ |
| WB023.00 | CA | 30 | 30 | 3.8 | 0.56 | 130 | 20.3 | 31 | 163 | $3 / 31 / 2008$ |
| WB026.00 | CA | 30 | 30 | 3.5 | 0.42 | 122 | 12.5 | 31 | 163 | $3 / 31 / 2008$ |
| WB026.50 | P | 30 | 30 | 3.5 | 0.61 | 1320 | 21.9 | 31 | 163 | $1 / 5 / 2010$ |
| WB027.00 | CA | 30 | 30 | 2.1 | 0.21 | 26 | 4.1 | 31 | 163 | $1 / 7 / 2008$ |
| WB029.00 | P | 30 | 30 | 3.2 | 0.51 | 300 | 14.9 | 31 | 163 | $3 / 16 / 2009$ |

## P90 Table Key

Station: Station ID
Class: Classification of sample location

$$
\begin{aligned}
& A=\text { Approved } \\
& C A=\text { Conditionally Approved } \\
& C R=\text { Conditionally Restrict } \\
& R=\text { Restricted } \\
& P=\text { Prohibited } \\
& X=\text { Not Applicable }
\end{aligned}
$$

Count: Total number of samples used in calculation
MFCount: Number of samples that used the Membrane Filtration method
GM: Geometric Mean. The geometric mean, or geomean, is a type of averaging calculation. Unlike a simple average or arithmetic mean, the geomean takes into account the way bacteria grow. During bacterial growth, each bacterium doubles and reproduces itself i.e. one bacterium becomes two, two bacteria become four, four become eight, and so on. There are low values at first and the rate of growth increases as the number of colonies increases. This is called exponential growth. This growth pattern means a fecal coliform dataset may have a few high scores and many low scores. The calculation for the geometric mean takes exponential growth into account by transforming the data into logarithms, taking the mean and then converting the number back to a log base 10 number. For example, the arithmetic mean of a fecal coliform score of $300,150,23$ and 2 CFU/100ml is 119 CFU/100ml. Calculating the geomean, the result is $38 \mathrm{CFU} / 100 \mathrm{ml}$.

## SDV: Standard Deviation

MAX: The highest score within the sample set used to calculate the P90
P90: The 90th percentile (P90) is the variability standard, meaning this value takes into account the variability of test readings. In any test measurement, successive readings of the same sample would produce slightly different scores each time due to precision of the equipment, human error, etc. This type of variability is a factor of the test method and equipment used and is true of all testing methods. To account for the variability in the fecal coliform test, a standard has been established. Here again, since bacteria grows exponentially, the calculations are performed on a logarithmic scale. The P90 is based on the distribution of fecal coliform scores and means that $90 \%$ of scores are at/or below the P90 and $10 \%$ scores are above. As long as most of the other scores are low, a few high scores will not have a large impact on the P90 value. The P90 standard is the acknowledgment by the NSSP that a few high scores in data set may be due to the variability of the test method. If the area shows high fecal coliform scores intermittently due to pollution events such as rainfall, this may cause water quality to exceed the P90 standards because the shellfish are intermittently subject to polluted waters.
Appd_Std: Approved standard
Restr_Std: Restricted standard
Min_Date: Minimum Date - oldest date included in sample set for P90 and GM calculations

## Maine Department Marine Resouces

York River - York


## Maine Department Marine Resouces

York River - York


## Maine Department Marine Resouces

York River - York


## Maine Department Marine Resouces

York River - York


## Maine Department Marine Resouces York River - York



